- 講演者 内山 康一 氏(上智大学)
- 題目:On local solutions to a radical $p$-elliptic equation on $(0,\infty)$
- 日時:平成 21年 10月 5日(月)16:40-17:30
Reviewing power series description of analytic singularities of local solutions to a radial $p$-Laplace equation near a point $\sigma$ in $(0, \infty)$, I will discuss power series construction of solutions $U®$ near the ends of $(0,\infty)$ to a radial $p$-elliptic equation \[ (r^{n-1}a®^{p/2}|U_r|^{p-2}U_r)_r + \lambda r^{n-1}\rho®|U| ^{q - 2 } U = 0 \] for $1<p, q< \infty$ and nonzero real $\lambda$. A Briot-Bouquet type theorem of two varibales is used for these purposes.
[<6>]