• 講演者 : Flavia Giannetti 氏 (Universit\`a degli Studi di Napoli Federico II)
    • 題目 : Some regularity properties for minimizers of non autonomous functionals with nonstandard growth conditions
    • 日時 : 平成29年3月21日(火)15:00 – 16:00

I will talk about some regularity properties of the local minimizers of integral functionals of the type \[\int_{\Omega}\Phi1)$ is uniformly continuous. I will also discuss the more general case of integral functionals whose integrand exhibits the dependence on the $x$ variable both in the coefficients and in the exponent. More precisely, I will deal with the regularity properties of the local minimizers of integral functionals of the type \[ \int_{\Omega}\Phi^{p(x)}((A_{ij}^{\alpha\beta}(x,u)D_iu^{\alpha}D_ju^{\beta})^{1/2})\,dx, \] where $p(x):\Omega\to(1,+\infty)$ is a continuous function. All the results I will show are contained in two recent papers in collaboration with Antonia Passarelli di Napoli, Maria Alessandra Ragusa and Atsushi Tachikawa.

5 images

[<6>]


1)
A_{ij}^{\alpha\beta}(x,u)D_iu^{\alpha}D_ju^{\beta})^{1/2})\,dx,\] where $\Omega\subset \mathbb{R}^n$ is a bounded domain, $u:\Omega\to\mathbb{R}^N$, $n,N\geq 2$, $\Phi$ is an Orlicz function satisfying both the $\Delta_2$ and $\nabla_2$ conditions and the function $A(x,s)=(A_{ij}^{\alpha\beta}(x,s
  • seminar/2016/023.txt
  • 最終更新: 2017/11/16 18:17
  • by 127.0.0.1