第18回

  • 講演者 : Der-Chen Chang 氏(Georgetown 大学)
    • 題目:Estimates for elliptic boundary valued problem in Hardy spaces
    • 日時:平成27 年3 月9 日(月)16:30 – 17:30

Let \(\Omega\) be a bound domain in \(\mathbb{R}^n\) with smooth boundary. Consider the following elliptic boundary valued problem:

\[ \begin{cases} \Delta u = f \quad \text{in}\; \Omega
Xu = g\quad \text{on the boundary}
\end{cases} \] Here \(X\) is a transversal vector field to the boundary. This includes the regular Dirichlet and Neumann problem. In this talk, we first introduce suitable Hardy spaces \(H_p(\Omega)\) on \(\Omega\). Then we shall show the inequality \[

\text{norm of second partial differential of $f$} \leq \text{const * norm of $f$}

\]

21 images

[<6>]